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A B S T R A C T   

Humans and some other animals can autonomously generate action choices that contribute to solving complex 
problems. However, experimental investigations of the cognitive bases of human autonomy are challenging, 
because experimental paradigms typically constrain behaviour using controlled contexts, and elicit behaviour by 
external triggers. In contrast, autonomy and freedom imply unconstrained behaviour initiated by endogenous 
triggers. Here we propose a new theoretical construct of adaptive autonomy, meaning the capacity to make 
behavioural choices that are free from constraints of both immediate external triggers and of routine response 
patterns, but nevertheless show appropriate coordination with the environment. Participants (N = 152) played a 
competitive game in which they had to choose the right time to act, in the face of an opponent who punished (in 
separate blocks) either choice biases (such as always responding early), sequential patterns of action timing 
across trials (such as early, late, early, late…), or predictable action-outcome dependence (such as win-stay, lose- 
shift). Adaptive autonomy was quantified as the ability to maintain performance when each of these influences 
on action selection was punished. We found that participants could become free from habitual choices regarding 
when to act and could also become free from sequential action patterns. However, they were not able to free 
themselves from influences of action-outcome dependence, even when these resulted in poor performance. These 
results point to a new concept of autonomous behaviour as flexible adaptation of voluntary action choices in a 
way that avoids stereotypy. In a sequential analysis, we also demonstrated that participants increased their 
reliance on belief learning in which they attempt to understand the competitor's beliefs and intentions, when 
transition bias and reinforcement bias were punished. Taken together, our study points to a cognitive mechanism 
of adaptive autonomy in which competitive interactions with other agents could promote both social cognition 
and volition in the form of non-stereotyped action choices.   

1. Introduction 

The capacity for voluntary action is often considered a defining 
feature of the human mind, but what volition is remains controversial. 
Two strong aspects of the definition of volition rely on exclusion: actions 
that are immediate responses to an external triggering stimulus are less 
voluntary than actions that are internally generated; actions that merely 
continue a routine, stereotyped generative pattern are less voluntary 
than actions that are planned a new, or actions that arise spontaneously. 
Both of these key features of volition are lacking in laboratory studies of 
behaviour, which traditionally seek tight experimental control through 
imperative stimuli and overlearned response patterns. 

Many studies of volition involve a paradoxical instruction to act in a 
way that is endogenous and spontaneous (Brass and Haggard, 2007; 
Fleming et al., 2009; Jahanshahi et al., 1995; Libet et al., 1983) without 

being triggered by external factors (Jenkins et al., 2000). This mini
malist approach can elicit actions that are stimulus-independent. Often, 
it leads to actions that have an unpredictable or random pattern, either 
because this is explicitly instructed (Baddeley, 1966; Baddeley et al., 
1998; Jahanshahi et al., 2000), or because the participant implicitly 
intuits that stereotypy and voluntariness are opposites. But such studies 
neglect the reasons or goals that an agent may have for acting, and omit 
the crucial ‘Why?’ aspect of voluntary action (Haggard, 2019; Shadlen 
and Roskies, 2012). 

Philosophical accounts of free action distinguish between freedom 
from external constraint, and freedom to act in accordance with goals 
and desires (Berlin, 1969; Bonicalzi and Haggard, 2019). Here we pro
pose that competitive game scenarios can capture both the “freedom 
from” aspect of voluntary action (since the game structure can require 
the participant to act in the absence of triggering stimuli, or stereotyped 
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response patterns) and “freedom to” aspect (since the participant has the 
clear goal of defeating the opponent and achieving good performance). 
For example, in the ‘rock, paper, scissors’ game, each participant selects 
an action without first seeing the action of their opponent. Second, many 
competitive games encourage unpredictable action over stereotyped 
action, even without any explicit instruction to act randomly. In addi
tion, many games have a “means-ends” structure, where active selection 
between alternative possible action choices is the key to success. In order 
to defeat the opponent, each participant needs to avoid stereotyped 
exploitative behaviours and instead explore alternative strategies. 
Humans and non-human primates indeed respond to competitive pres
sure by initiating exploratory behaviour (Barraclough et al., 2004; Lee 
et al., 2004; Lee et al., 2005). 

In the present study, we have studied a classical paradigm of volition 
through the lens of a competitive game. Participants chose when to 
make a simple manual keypress action (Libet et al., 1983), while trying 
to avoid colliding with a competitor. We designed several virtual 
competitor algorithms, each designed to predict and punish stereotyped 
choice patterns associated with a particular kind of cognitive strategy for 
action generation, pressurising participants to become free from the 
corresponding pattern. The ability to adapt voluntary action choices 
under various competitive pressures offers quantitative measures of 
individual autonomy. These measures can identify how free the agent 

can become from specific action-generation strategies or cognitive 
habits and how successful they are in remaining free to achieve their 
goal (of succeeding in the game). For example, if people are unable to 
avoid repeating the same action choice, even when the current game 
environment punishes them for doing so and thus provides good reasons 
to innovate actions, one might question in what sense their actions are 
truly free. This conceptualization of free and autonomous action is 
widely used in understanding addiction (Weinberg, 2020; Weinberg, 
2022). 

We conceptualised three distinct expressions of autonomous behav
iour, corresponding to three different constraints from which their ac
tion should become free. First, people may have a bias towards simple 
repetition of a given action choice (Dolan and Dayan, 2013; Robbins and 
Costa, 2017). We refer to this pattern of behaviour as choice bias. 
Consider the simple task of repeatedly generating one of three digits (see 
Fig. 1A). This offers a convenient form for the choice regarding when to 
act in the experiment reported in this paper, and also has commonalities 
with rock, paper, scissors and other games. Agent X may prefer to choose 
“1”, for whatever reason. Suppose now that a competitor punishes X for 
repeating one choice within a game scenario. If X's action is reasons- 
responsive to the environmental challenge, agent X should now 
choose the two other digits more often and should eventually have no 
overall preference for any options. This adaptive capacity may reflect 

Fig. 1. Hypothetical experiment. An agent is required to generate digits 1, 2, 3, as shown in the square brackets. A. Agent X exclusively selects the digit 1. They have 
a choice bias. In contrast, an agent without choice bias selects each digit equally often. B. Agent X generates successive digits by counting. In contrast, an agent 
without transition bias does not use any obvious transition strategy between moves. C. Agent X tends to repeat any action that has just been rewarded. In contrast, an 
agent without reinforcement bias does not use information about the outcome of the present action to decide the next action. In each case, the longer rightward arrow 
indicates the extent of the agent's bias relative to the agent without the corresponding bias. The shorter rightward arrow indicates the extent of the agent's residual 
bias when the opponent punishes the corresponding pattern of action choice by using it to predict the agent's next move. The leftward arrow thus indicates the extent 
of the agent's bias reduction, adaptive autonomy. 
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the autonomy each agent has over their choice bias. We call this quantity 
adaptive autonomy. 

In the second environment, the competitor pressurises participants 
by detecting and exploiting habitual action chains or routines (Lashley, 
1951; Robbins and Costa, 2017; Rosenbaum et al., 2007). In our 
example, integer counting (“1, 2, 3”) is such a choice pattern (agent X in 
Fig. 1B). We refer to this as transition bias. The only way to completely 
avoid such biases is to generate each choice independently from the 
previous trial. Yet studies of random number generation show people 
find this difficult (Baddeley et al., 1998; Ginsburg and Karpiuk, 1994). A 
predictable sequential behaviour is also observed in competitive games 
such as football penalty kicks (Misirlisoy & Haggard, 2014). Fig. 1B il
lustrates potential behavioural adaptation to punishing transition bias. 

Lastly, we consider how people respond to previous action successes 
and failures, by considering reinforcement bias. In Fig. 1C, agent X re
peats the digit that has been rewarded. In contrast, we can imagine an 
agent who generates each choice independently from whether the pre
vious outcome was rewarded or not. Most reinforcement learning ap
proaches assume that a ‘win-stay lose-shift’ strategy is natural, or even 
unavoidable (Worthy et al., 2013). Here we test whether people can 
unlearn this familiar pattern of outcome-dependent action choices when 
it is punished by a competitor. Adaptive autonomy would mean that an 
agent would be able to break the association between the previous 
outcome and the forthcoming action (Fig. 1C). Such freedom from in
fluences of past reinforcement is considered important in situations such 
as combatting addiction, and recovery from trauma. 

In addition, we considered whether adaptive autonomy with respect 
to these three different forms of constraint could be controlled by a 
shared cognitive mechanism (Braver, 2012; Braver et al., 2007; Tang 
et al., 2022), or whether there are distinct cognitive control modules 
specific to modulating each particular bias. To do this, we explored 
correlations across individuals among the three adaptive autonomy 
measures derived from these three punishment schedules. 

Finally, we modelled the learning process by which people generated 
a new action in order to avoid colliding with the competitor. Due to the 
nature of the competitive game, the participant could potentially 
develop a model of the opponent by understanding what options the 
opponent is going to select, and thus improve their beliefs about the 
opponent's behaviour and guide their own action choices accordingly. 
We thus examined whether participants moved from model-free rein
forcement learning (Dolan and Dayan, 2013) towards model-based 
behaviour. This would represent an interesting convergence between 
theory of mind, voluntary action, and behavioural autonomy. 

2. Methods 

The full description of the data analysis, competitor design and 
computational models can be found in Supplementary Material. 

2.1. Participants 

One hundred and fifty-nine participants (age range = 18–45, M =
29.5 yo, SD = 7.2) were recruited online via the Prolific website (https 
://www.prolific.co/). Participants received a basic payment of £3.75 for 
their participation in a 30-min experiment. They earned a bonus of up to 
£4 based on their performance on the task. There were 95 female par
ticipants and 64 male participants. Recruitment was restricted to the 
United Kingdom. Seven participants were excluded from the analysis 
due to insufficient performance and the remaining 152 participants were 
analysed. All procedures were approved by the Research Ethics Com
mittee of University College London. Participants gave informed consent 
by checking and validating the consent form. 

2.2. Experimental design 

Apparatus. We used the JavaScript library jsPsych (de Leeuw, 2015) 

and the plugin jsPsych-psychophysics (Kuroki, 2021) to program the 
task and hosted the experiment on the online research platform Gorilla 
(https://gorilla.sc/) (Anwyl-Irvine et al., 2020), which participants 
could access through their browser on their own computer. We assumed 
that monitor sampling rates were typically around 60 Hz, with little 
variation across computers (Anwyl-Irvine et al., 2020). The size and 
position of stimuli were scaled based on each participant's screen size 
which was automatically detected. The size of stimuli reported below 
are for a monitor size of 15.6″ (view point size, width × height: 1536 ×
746 pixels). A short version of our task is available to play online: htt 
ps://research.sc/participant/login/dynamic/5D39406C-8AB9-4F6 
D-8FD7-9F995D9DCB83 

Stimuli and task. Each trial started with a fixation cross, which 
appeared for 0.6–0.8 s. The images of a tree, a flock of birds and a basket 
containing apples then appeared (Fig. 2A). A tree (width × height: 307 
× 375 pixels) was shown on the left of the screen and a flock of birds 
(width x height: 30 × 22 pixels each) were located on the tree. A rect
angular basket of apples (width × height: 153 × 167 pixels) was pre
sented in the bottom centre. After the fixation cross disappeared and all 
images appeared, the participants were given 4.5 s to throw the food. 
Pressing a key initiated delivery of the food to a safe storage location 
which was located at 447 pixels forward from the start point. This de
livery took 1.5 s. We programmed the birds to attempt to intercept and 
catch the food. To do so, we divided each trial into early, middle and late 
intervals, though these labels were never given to participants. The birds 
on each trial were designed to intercept the food thrown within one of 
three intervals: 1) early throw (0–1.5 s), 2) middle throw (1.5–3.0 s) or 
3) late throw (3.0–4.5 s). After their departure, it took approximately 
0.25 s for each bird to reach and pass through the storage location. The 
participants competed with the virtual competitor, aiming to deliver 
food before or after the birds reached the storage location. We counted 
whether one of the birds overlapped with the food when the delivery 
was completed. If this was the case, the food was caught, and the 
participant lost on that trial. If not, the food was delivered without it 
being caught, and the participant won the trial. If no response was 
submitted before 4.5 s, the food was launched automatically, and a trial 
was terminated as a timeout. Finally, we provided a feedback message: 
“Success!”, “Fail!” or “Timeout!”, which lasted for 1.0 s. The next trial 
then started with a fixation cross. See Supplementary Material and the 
link to the task above for further details. 

In the instructions, we emphasized the following points. First, merely 
reacting to the moment when a stimulus is absent – the birds resting in 
the tree – will not win the game because the birds can travel much faster 
than the food. Second, merely waiting for the birds to pass is not a so
lution because of the time constraint. Third, the birds' flying time is not 
the same on every trial, nor is it random. Instead, the birds can learn 
when the participant tends to act. Therefore, predicting when the birds 
will likely fly out of the tree and randomising the time to throw is 
important. The participants were not told explicitly about the strategy 
used to decide the bird's time of flight. 

Procedure. Participants first received the instructions and viewed a 
set of demonstrations about the task. Following some practice trials, the 
participants completed four blocks of the game with a 1-min break be
tween blocks. The baseline block lasted 2.5 min while the remaining 
blocks 1, 2 and 3 lasted 5 min each. The participants got as many throws 
of the food as they could in the 2.5 or 5 min. The participants could 
check remaining time in each block. We used time, and not trial number, 
to terminate each block so that participants did not respond immediately 
on every trial, finishing the game early. The bonus payment was 
determined by the percentage of throws that successfully avoided birds 
and was paid up to £1 for each block: if 40 out of 60 throws were suc
cessful, we paid £1 × 66.6% = £0.66 (average bonus, baseline: £0.94; 
block 1: £0.63; block 2: £0.59; block 3: £0.57). The success rate and the 
timeout rate were included in the feedback. Nevertheless, we assumed 
that some participants might consume time by not focusing on the game. 
To prevent this, we encouraged participants to sustain the proportion of 
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timeout trials under 5%. 

2.3. Competitor design 

The virtual competitor design was primarily inspired by studies with 
primates (Barraclough et al., 2004; Lee et al., 2004) and rodents (Tervo 
et al., 2014). We programmed the learning algorithm (i.e., birds) to seek 
out behavioural patterns in the participant's choice history and to 
pressure participants into novel behaviour. The participants could 
decide the time to act between 0 s (as soon as birds and food appeared) 
and 4.5 s (until timeout). To make the competitor's prediction simple, we 
discretised the time window into three intervals, 1) early interval (0–1.5 
s), middle interval (1.5–3.0 s) and late interval (3.0–4.5 s). The partic
ipants were not informed about this discretization. Given past behav
iour, the competitor predicted which interval a participant was likely to 
select. If the participant threw the food during the interval predicted by 
the competitor, the participant lost. If the participant threw the food 
during one of two other intervals, the participant won. 

We designed four distinct competitors (Fig. 2B). First, in the baseline 
block, Competitor 0 punished participants for responding immediately. 

In this block, the birds simply blocked the early throw on every trial. 
Thus, the stimulus-absence behaviour corresponded with waiting until 
the middle interval. Competitor 0 thus pressured participants to use 
voluntary control to resist immediate response (Haggard, 2019). 

Second, in block 1, Competitor 1 made predictions based on the 
participant's currently-preferred interval and punished choice bias. On 
each trial, a history of the participant's past ten choices was used to 
estimate the probabilities of selecting the early, middle and late interval. 
The choice probabilities were then used to generate the competitor's 
prediction for the upcoming choice. For instance, if the participant chose 
the early interval seven times, the middle interval twice, and the late 
interval once, the competitor penalised the early interval 70% of the 
time, the middle 20% of the time and the late 10% of the time. Thus, 
Competitor 1 required participants to distribute their choices across 
time. 

In block 2, Competitor 2 sought out transition bias or sequential 
pattern between the choice of interval on one trial and the next. A his
tory of the past 60 trials was used to estimate the conditional proba
bilities of selecting three intervals given the previous choice. Competitor 
2 then exploited these conditional probabilities to predict the upcoming 

Fig. 2. Virtual competitive environments. A. A trial sequence. The participant decides when to throw food within a 4.5 s time window. The aim is to deliver the food 
into safe storage at the top-centre of the screen, where it will arrive 1.5 s after their key press. A virtual competitor (i.e., a flock of birds) attempts to intercept the food 
by adjusting the time at which it flies out of a tree. For convenience, we divide the trial into early middle and late intervals, though these labels are used for analysis 
only, and are not given to participants. The virtual competitor intercepts the food during one of three action intervals, 1) early throw (0–1.5 s), middle throw 
(1.5–3.0 s) or late throw (3.0–4.5 s). Participants win a trial if they throw at a time which avoids the food being caught by the birds. B. Experimental design. In the 
baseline block, the early interval, associated with immediate responding, was punished. In block 1, choice bias that favoured any one interval over all others was 
predicted and punished. In block 2, transition bias (any sequential pattern) was punished. In this example, the competitor predicts the middle interval to be selected 
given a sequential pattern of the early, middle, and late. In block 3, reinforcement bias (any outcome dependence such as win-stay lose-shift) was punished. In this 
example, the competitor predicts the late interval to be selected given a pattern repeating the same interval when it is rewarded. C. Success rate of avoiding the birds 
against each type of competitor. A dashed line denotes the chance level. For each box, the central mark represents the median, the edges of the box are the 25th and 
75th percentiles and the whiskers are the 2.5th and 97.5th percentiles. * p < significant level after Bonferroni correction, Wilcoxon signed rank. N = 152. D. A 
distribution of wait times when an immediate response is punished (upper panel) and when the choice bias is punished (lower panel). The wait time data for each 
participant are aligned in each row. Each small dot represents a reaction time in each trial. 

K. Ota et al.                                                                                                                                                                                                                                      



Cognition 244 (2024) 105684

5

choice given the last choice. Competitor 2 pressured participants into 
avoiding habitual transition patterns. 

Finally, in block 3, Competitor 3 punished reinforcement bias 
(outcome dependence). Competitor 3 used the same search algorithm as 
Competitor 2 with the exception that they looked for the conditional 
probabilities of selecting three intervals to predict the upcoming choice 
given the last choice and the last outcome. Competitor 3 required par
ticipants to act independently from the previous outcome. Supplemen
tary Material describes how we programmed different computer 
algorithms. 

2.4. Data analysis 

Because the birds' decisions were discretized into one of the three 
response intervals, we similarly discretized participants' reactions into 
1) the early response: responding in 0–1.5 s, 2) the middle response: 
responding in 1.5–3.0 s, 3) the late response: responding in 3.0–4.5 s 
(including timeout). Note that these intervals were not known to the 
participants, who experienced a continuous temporal interval on each 
trial. 

Quantifying decision bias scores. Statistical distance is a standardised 
way of measuring the extent to which the observed probability distri
bution is different from the target probability distribution. We calcu
lated the Kullback-Leibler divergence to quantify the extent to which the 
participant's choice probability distribution is different from the choice 
probability distribution that a bias-free agent would exhibit. See Fig. 3. 

1) Choice bias. The probabilities of choosing the early, middle and 
late interval for a bias-free agent would be 0.33, respectively. We 
computed the choice probabilities P(c) given a history of intervals each 
participant chose in each block. The K-L divergence is then 

DKL choice bias =
∑

c∈E,M,L
P(c)log2

(
P(c)
0.33

)

(1) 

2) Transition bias. We computed the conditional probabilities of 
choosing the early, middle and late interval given the interval chosen on 
the previous trial P(c|c− 1) . We measured the K-L divergence of these 
participant's conditional probabilities from the participant's choice 
probabilities. The K-L divergence for each previous interval c− 1 is 
computed as 

DKL c− 1 =
∑

c∈E,M,L
P(c|c− 1)log2

(
P(c|c− 1)

P(c)

)

(2) 

The total K-L divergence as a weighted sum is then 

DKL transition bias =
∑

c− 1∈E,M,L
P(c− 1) × DKL c− 1 (3) 

We quantified the deviation of patterns associated with the previous 
choice from sequential patterns logically expected from the participant's 
own choice probabilities. Competitor 2 specifically detected and pun
ished this conditional dependence, on the top of choice bias in which 
Competitor 1 punished. 

3) Reinforcement bias. We computed the conditional probabilities of 
choosing the early, middle and late interval given the interval chosen 
and the outcome obtained on the previous trial P(c|c− 1, o− 1). We 
measured the K-L divergence of these participant's conditional proba
bilities from the participant's conditional probabilities given the previ
ous interval solely. The K-L divergence for each previous interval c− 1 
and each previous outcome o− 1 is computed as 

DKL c− 1 ,o− 1 =
∑

c∈E,M,L
P(c|c− 1, o− 1)log2

(
P(c|c− 1, o− 1)

P(c|c− 1)

)

(4) 

The total K-L divergence as a weighted sum is then 

DKL reinforcement bias =
∑

c− 1∈E,M,L

∑

o− 1∈ success failure

P(c− 1o− 1) × DKL c− 1 ,o− 1 (5) 

This way, we quantified the deviation of patterns associated with 
both the previous choice and the previous outcome from patterns logi
cally expected from the conditional dependence on the previous choice 
alone. Competitor 3 specifically detected and punished this outcome 
dependence, in addition to the choice bias and transition bias punished 
by Competitor 2. 

Statistical analysis. We tested the performance difference by Wilcoxon 
signed rank test because the K-L divergence score has the lower and 
upper limits and the assumption of normality may not be applied to the 
distributions of our dependent variables. The alpha level of 0.05 was 
corrected by the number of tests we performed in each class of test 
(Bonferroni correction). 

2.5. Lagged correlation 

We performed an ordinary regression analysis to examine the extent 
to which the participants' action choices (early, middle or late response) 
were influenced by their own previous actions and their opponent's 
previous actions (Devaine et al., 2014; Devaine et al., 2017). We fitted a 
cumulative link mixed-effects model with the current choice c as the 
dependent variable. The independent variables were one's own previous 
choices c− 1,…, c− 5 up to the 5th preceding trial, the opponent's previous 
choices c′− 1,…, c′

− 5 up to the 5th preceding trial and a dummy variable 
which indicates block 1 (choice block), block 2 (transition block) or 
block 3 (reinforcement block). Performance on the baseline block was 
removed from the analysis since choice transitions between trials were 
rare, as participants generally resisted immediate responses. A dummy 
variable interacted with each lagged choice to test whether these lagged 
correlations changed across blocks 1, 2 and 3. Slopes were allowed to 
vary between participants as random effects. A mixed-effect model was 
fit using ordinal package (Christensen, 2022). In addition, an ordinary 
regression was performed on the sequence of action choices simulated 
by computational models (see Computational models in Supplementary 
Material). 

3. Results 

3.1. A summary of the task and game scores 

Participants were asked to decide when to press a key that caused 
some food to be delivered to a storage location. They were competing 
with a virtual competitor, represented as a flock of birds (Fig. 2A). The 
birds tried to intercept and catch the food during the delivery process, by 
deciding when to fly out of a tree. The participant's task was to deliver 
the food without it being caught by the birds. We programmed the birds 
to predict the time of the participant's next action based on the history of 
their reaction times. Based on this prediction, the birds made a choice of 
when to fly on each trial. They flew at a time that was designed to 
intercept the food thrown by a participant within one of three intervals: 
1) early throw (0–1.5 s), 2) middle throw (1.5–3.0 s) or 3) late throw 
(3.0–4.5 s). Participants were not told whether the birds chose a 
continuous or a 3-option distribution. The participants could win a trial 
by pressing the key during one of two intervals that the birds did not 
select. The intervals were not explicitly demarcated for the participant, 
who experienced a continuum of potential action times in each trial. 
Participants could not perform the task reactively because the birds 
could travel much faster than the food. If the participants simply waited 
for a moment when no birds were present and then threw in reaction to 
that moment, the birds could suddenly appear and intercept the food. 
Therefore, the participants were instructed to predict when the birds 
would appear and to try to avoid them. This feature means that our 
participants' actions were stimulus-independent. 

There were 4 blocks in total. In each block, the participants competed 
with a class of competitors that pressurised a distinct constraint or a 
stereotypical action-generation strategy (Fig. 2B). In the baseline block, 
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Fig. 3. Measuring decision bias scores in the context of different punishments. In the raster plot, potential actions for the early, middle and late intervals are shown. A 
vector of the numerical values illustrates the probabilities for choosing these three action intervals. A. Agent X selects the early interval more frequently than the 
other two intervals. In contrast, an agent without choice bias selects each interval equally often. We measured the statistical distance between an individual and a 
bias-free agent with respect to a pattern similarity between their choice probabilities. B. The dashed line from the choice bias vector in A to the transition vector in B 
shows the logical relation between choice and transition: any change in choice bias inevitably changes the transition vector. Transition bias is considered as the 
additional change over and above these basic effects of choice bias. An agent without any transition bias should determine the next action independently from the last 
action. Therefore, the conditional choice probabilities given the previous action interval are identical to the choice probabilities. The statistical distance of transition 
bias increases if the conditional probabilities observed in the agent X's action choices deviate from the choice probabilities that agent X themselves exhibits. C. The 
dashed line from the transition bias vector in B to the reinforcement vector in C shows the logical relation between transitions and reinforcements. Reinforcement 
bias is considered as the additional change over and above these basic effects of transition bias. An agent without any reinforcement bias should determine the next 
action independently from previous success or failure. Therefore, the conditional choice probabilities given the previous action interval and the previous outcome are 
identical to the conditional choice probabilities given only the previous action interval. The statistical distance of reinforcement bias increases if the conditional 
probabilities observed in the action-outcome pattern deviate from the conditional probabilities in the agent X's sequential pattern from one action to the next. D-F. 
Planned comparisons show the degree of adaptive autonomy (bias reduction) when choice bias is punished (D), when transition bias is punished (E) and when 
reinforcement bias is punished (F). * p < significant level after Bonferroni correction, Wilcoxon signed rank. N = 152. On each box, the central mark represents the 
median, the edges of the box are the 25th and 75th percentiles and the whiskers are the 2.5th and 97.5th percentiles. Dots adjacent to each box show individ
ual scores. 
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Competitor 0 was programmed to punish the participants for responding 
immediately: the birds consistently punished a participant who threw in 
the early interval, so the participant was incentivized to wait to avoid 
being intercepted. In block 1, Competitor 1 punished choice bias: if a 
participant selected one interval more often than the other two, then the 
birds became more likely to intercept the food during the same interval. 
In block 2, Competitor 2 predicted transition bias and punished any 
predictable association between the time of the participant's current 
throw and the time of the preceding throw. Finally, in block 3, 
Competitor 3 punished reinforcement bias by seeking out whether the 
time of the current throw was associated with both the time of the 
preceding throw and the preceding outcome. Thus, the participants 
required progressive degrees of autonomy across blocks: they needed in 
each block to act in a way that was even more unconstrained than required 
by the competitors they had played previously. 

Participants were never told when they should act on any given trial. 
Participants did not receive any explicit instruction or explanation about 
how the competitor would behave or respond to the participant in each 
particular block. Instead, they could only monitor the success/failure of 
avoiding the birds on each trial, and adapt their behaviour accordingly 
to try to avoid the birds on future trials. Thus, successful performance 
under different punishment regimes would depend on implicit mecha
nisms of behavioural adaptation rather than explicit understanding. 

We first checked the percentage of successful bird-avoiding trials. 
The participants achieved near-perfect success rates against Competitor 
0 who simply punished immediate responding (Fig. 2C; Median [Mdn] 
= 96.6%). The participants avoided an immediate response and initiated 
the throw with a mean of 2.15 s (SD 0.49 s) after the trial started (Fig. 2D 
upper panel). In block 1, the success rate dropped to 66.6%, which, 
would be predicted from selecting one of the three intervals at random 
(Fig. 2C; Mdn = 64.3%, p < .001, z = 10.69 for blocks 0 versus 1, 
Wilcoxon sign rank). The success rate further decreased in block 2 
(Fig. 2C; Mdn = 59.0%, p < .001, z = 5.74 for blocks 1 versus 2, Wil
coxon sign rank) and even further in block 3 (Fig. 2C; Mdn = 56.9%, p =
.015, z = 2.44 for blocks 2 versus 3, Wilcoxon sign rank). Therefore, our 
progressive series of punishments increased the predictive power of 
punishing the participants' responses. 

3.2. Do people adapt to punishments of habitual actions? 

We next examined the extent to which people could adapt to pun
ishment of different behavioural biases. We therefore developed a 
measure that reflects an individual's tendency towards the pattern of 
action selection for punishment on each block. We measured the sta
tistical distance (Kullback-Leibler [K-L] divergence) between the 
observed probabilities of selecting the early, middle and late intervals, 
and the probabilities that an agent, who does not have a particular type 
of bias would exhibit (Fig. 3A–C). A lower statistical distance means that 
the individual is similar to this bias-free agent. We call this quantity a 
decision bias score. The decision bias score before the punishment of a 
specific pattern reflects an individual's trait regarding when to act. We 
then looked at the change in decision bias scores relative to the previous 
block, when a given individual pattern was punished. We quantified the 
score for choice bias, transition bias and reinforcement bias, respectively 
(Fig. 3A–C). A greater change in bias scores would indicate stronger 
adaptive autonomy, or ability to update reasons-guided voluntary action 
choice when a habit becomes punishable. 

Participants began to distribute action times appropriately when 
Competitor 1 started punishing the repetition of the same action interval 
(Fig. 2D). Accordingly, their choice bias score—a statistical distance of 
the observed choice probabilities from probabilities 0.33 (Fig. 3A)— 
reduced after punishment (Fig. 3D; Mdn = 1.37 for the punishment of 
immediate response versus Mdn = 0.06 for the punishment of choice 
bias, p < .001, z = 10.69, Wilcoxon sign rank). Competitor 1 did not 
penalize transition patterns from one action to the next and allowed 
participants to still use transition bias. We quantified the transition bias 

score by considering the extent to which probabilities given the previous 
action choice are explained by one's own choice probabilities (Fig. 3B). 
We found that the transition bias decreased after the competitor pres
surised transition patterns (Fig. 3E; Mdn = 0.13 for the punishment of 
choice bias versus Mdn = 0.09 for the punishment of transition bias, p <
.001, z = 3.82, Wilcoxon sign rank). Against Competitor 3, the partici
pants were asked to act even more freely to avoid patterns following 
positive or negative outcomes. We evaluated the reinforcement bias 
score by considering the extent to which probabilities given the com
bination of the previous action choice and the previous outcome are 
explained by probabilities given the previous action alone (Fig. 3C). The 
reinforcement bias did not show any significant improvement under 
competitor punishment (Fig. 3F; Mdn = 0.11 for the punishment of 
transition bias versus Mdn = 0.11 for the punishment of reinforcement 
bias, p = .79, z = 0.27, Wilcoxon sign rank). 

We further tested the possibility that the participants adapted 
differently to the influence of positive and negative reinforcement. The 
processes that follow a positive outcome may be different from those 
that follow a negative outcome (Gehring and Willoughby, 2002; Hajcak, 
Moser, Holroyd and Simons, 2006; Vickery, Chun and Lee, 2011), 
leading to a stereotypical win-stay lose-shift strategy (Wang et al., 
2014). We quantified the positive reinforcement bias and the negative 
reinforcement bias score separately (SFig. 1A). Nevertheless, we did not 
find significant improvements in the positive reinforcement bias 
(SFig. 1B; Mdn = 0.29 for the punishment of transition bias versus Mdn 
= 0.34 for the punishment of reinforcement bias, p = .21, z = − 1.26, 
Wilcoxon sign rank) nor in the negative reinforcement bias (SFig. 1B; 
Mdn = 0.43 for the punishment of transition bias versus Mdn = 0.41 for 
the punishment of reinforcement bias, p = .19, z = 1.30, Wilcoxon sign 
rank). These results suggest that people are able to become more 
autonomous from standard habitual choices and habitual action tran
sitions but cannot break away from outcome dependencies. That is, 
people display stereotyped patterns of being guided by reinforcement, 
such as win-stay lose-shift, even when they are discouraged to do so. 

3.3. Is there a common factor underlying all adaptive autonomy? 

The bias reduction between the pre-punishment and the post- 
punishment phases provides a measure of adaptive autonomy for each 
decision bias (Fig. 3D–F). Theories of domain-general cognitive control 
propose that proactive, strategic cognitive control acts similarly across 
cognitive tasks (Braver, 2012; Braver et al., 2007; Tang et al., 2022). The 
adaptive ability to become free of one kind of bias would be expected to 
correlate with the ability to become free of another bias, to the extent 
that both depend on a common, domain-general mechanism. In fact, the 
correlation structure of the changes in our decision bias scores showed 
poor correlations across our 152 participants (Fig. 4; r = − 0.07 ~ 
− 0.01). This suggests that the ability to voluntarily regulate one bias is 
not strongly associated with the ability to regulate other biases. This also 
suggests that our measurements are separable and evaluate three 
distinct forms of autonomy conceptualised above, rather than a single 
common form of autonomy. Since this correlation approach would be 
undermined by a floor effect of participants who showed no adaptive 
autonomy at all, we repeated the correlations including only partici
pants who showed a numerical change in decision bias. We did not find 
significant correlations among adaptive autonomy to the three bias 
classes even in this restricted group (r = − 0.06–0.04). We also computed 
Jeffreys–Zellner–Siow Bayes factor for correlation (Wetzels and 
Wagenmakers, 2012). The Bayes factor BF10 using the JZS prior was 
0.07 (choice versus transition), 0.06 (choice versus reinforcement), and 
0.09 (transition versus reinforcement), respectively. Bayes factor in
dicates that the data strongly favours a null hypothesis of independence 
of variables we tested (Jeffreys, 1961). These results suggest that people 
recruit distinct cognitive capacities to exert autonomous behaviour 
when unlearning choice bias, transition bias and reinforcement bias, 
contrary to concepts of a general cognitive control capacity. 
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3.4. A mechanism that underlies adaptive autonomy 

We demonstrated that people become less stereotypical and more 
volitional by adapting to external constraints of competitive pressures. 
In competitive and strategic settings, voluntary actions that aim a goal- 
directed and less stereotyped behaviour can be achieved via two disso
ciable ways. The first is a stochastic approach which aims to increase the 
entropy of behaviour. This approach does not involve any experience- 
based updates on action choices. A second social-cognitive approach 
exploits belief-learning processes (Camerer, 2003;Hampton et al., 2008 ; 
Zhu et al., 2012). Here the agent forms an explicit model of the structure 
of the game by learning the competitor's likely action (1st order belief) 
or by learning how the competitor predicts the agent's likely action (2nd 
order belief). Broadly speaking, the algorithm adopted by the virtual 
competitor in this task is considered 1st order belief learning. By 
knowing that the competitor possesses the 1st order belief and predicts 
how the agent themselves will act, the 2nd order belief learner generates 
an action that breaks the competitor's prediction. 

Both the stochastic account and socio-cognitive account could 
potentially form part of a theory of volition since they both involve a 
choice between alternative possible actions, and both are goal-directed. 
When human agents try to produce statistical randomness, they rely 
heavily on working memory resources (Baddeley et al., 1998). The 
socio-cognitive approach involves learning and exploiting a model of the 
structure of the game in order to select the best action at a particular 
trial. On one view, both first-order and second-order belief learning 
involve the element of mentalising because they simulate the 

competitor's intention (Hampton et al., 2008; Zhu et al., 2012). On 
another view, first-order belief learning is interpreted as a special case of 
reinforcement learning which does not involve learning about the 
competitor's mental state (Abe and Lee, 2011; Camerer and Ho, 1999) 
since the underlying mathematical formula is equivalent to adjusting 
action values for both chosen and unchosen actions according to both 
their actual rewards and hypothetical, fictive rewards that the agent 
would have observed. Nevertheless, learning successful actions from 
fictive rewards still involves the element of learning the overall reward 
structure of the game. 

To test whether our participants relied more on purely stochastic 
processes or socio-cognitive processes, we examined patterns of 
sequential dependence of the data (Devaine et al., 2014; Devaine et al., 
2017). Specifically, we simulated a sequence of choices generated by the 
model agent who plays against the competitor (see Computational models 
in Supplementary Material). We then regressed their simulated choices 
onto their own past choices and their opponent's past choices. As illus
trated in Fig. 5A, an agent who uses a purely stochastic process has no 
sequential structure to their action choices and their opponent's choices. 
An agent who relies on reinforcement learning (Sutton and Barto, 2018) 
will tend to repeat their past choices and therefore show a sequential 
structure characterised by positive lag correlations with their own ac
tions. In contrast, an agent who exploits first-order belief learning will 
show negative lag correlations with their opponent's actions, because 
they learn the opponent's intentions and avoid taking the same action 
that the opponent showed in the past. Importantly however, such an 
agent does not show positive lag correlations with their own actions as 

Fig. 4. Correlation structure underlying measures of adaptive autonomy. A planned comparison between the pre-punishment and the post-punishment phase in 
Fig. 3D–F provides bias reduction (i.e., adaptive autonomy) for each class. Across 152 participants, there is no strong correlation between the three measures of 
adaptive autonomy. 
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strongly as reinforcement learning does because first-order belief 
learning does not just repeat their past choices that avoided the oppo
nent's action but also selects the other action that the opponent did not 
show. Finally, an agent who relies on second-order belief learning will 
not show negative lag correlations with their opponent's actions, but will 
show negative lagged correlations with their own actions. This is 
because they know that the competitor will predict their own intentions 
– so they should use this knowledge to avoid repetitive action patterns 
that the opponent might potentially use to predict the agent's future 
behaviours. Therefore, the crucial marker of second order belief learning 
is a stronger negative lagged correlation with one's own action. 

Fig. 5B illustrates the lagged correlations for our participants' data. In 
general, the participants' current action was strongly correlated with the 
most recent action, and correlations became weaker as the lag increased. 
Fig. 5C shows a lag-1 correlation across blocks. Participants' own choice 
in the preceding trial was positively correlated with their current choice 
when choice bias was punished (block 1; β = 0.13, 95% confidence in
terval = [0.07, 0.19]). This pattern of result is consistent with reliance 
on reinforcement learning or on first-order belief learning. In contrast, 
this correlation was negative when transition bias was punished (block 
2; β = − 0.17, 95% CI = [− 0.23, − 0.11]) and also when reinforcement 
bias was punished (block 3; β = − 0.22, 95% CI = [− 0.27, − 0.16]). 
Pairwise testing showed that lag-1 correlations in blocks 2 and 3 were 
significantly lower than in block 1 (p < .001, z = 7.14; p < .001, z = 8.34, 
respectively), while there was no difference between blocks 2 and 3 (p <

.44, z = 1.22). This pattern of results is consistent with increased reli
ance on second-order belief when the competitor punished transition 
and reinforcement biases. In addition, the opponent's choice in the 
preceding trial was negatively correlated with the participant's current 
action choice in all three blocks (β = − 0.75, 95% CI = [− 0.81, − 0.69] 
for block 1; β = − 0.57, 95% CI = [− 0.63, − 0.51] for block 2; β = − 0.43, 
95% CI = [− 0.48, − 0.37] for block 3). Pairwise comparisons showed 
that the negative lag-1 correlation became weaker from block 1 to block 
2 (p < .001, z = − 4.22) and again from block 2 to block 3 (p < .01, z =
− 3.55). This pattern of results is also consistent with a shift from first- 
order belief learning to second-order belief learning across blocks, 
with participants becoming progressively less dependent on the action 
that their opponent took on the preceding trial. 

To quantify which model (stochastic action generation model; rein
forcement learning, RL; 1st order belief learning, 1st order BL; 2nd order 
belief learning, 2nd order BL) supports our participants' behaviour, we 
fitted each model to predict choice sequences from the reward and from 
the opponent's action choice on the preceding trial (see Computational 
models in Supplementary Material). We performed a group-level 
Bayesian model selection (Rigoux et al., 2014; Stephan et al., 2009) 
and computed the protected exceedance probability which is an 
omnibus measure of the probability that a given model is the most 
frequent one among tested models (Fig. 5D). The protected exceedance 
probability for the RL model to outperform the other three models was 
close to 100% under the punishment of immediate response at baseline. 

Fig. 5. Influence of previous action choices on the current action choice. A. Estimated lagged correlation coefficients with the agent's own action in the preceeding 
trial (upper panel) and with their opponent's action in the preceeding trial (lower panel). In the simulation, four types of model agents competed against Competitor 
1. They used either stochastic action generation, reinforcement learning, first-order belief learning or second-order belief learning. The stochastic action generation 
process predicts no sequential dependence on both one's own action and their opponent's action. A positive lagged correlation with own action indicates that agents 
repeat the same action that agents took (upper panel)or their opponent took (lower panel) in the past. While a negative lagged correlation indicates that agents avoid 
repeating the same action agents took or their opponent took. B. Lagged correlation coefficients in participants' choice across blocks. C. The values of lag-1 cor
relation in three different blocks are taken from panel B and replotted as a bar graph. As competitive demands increase, one's own action in the last trial becomes 
negatively correlated with the current action while the negative correlation with the opponent's last action becomes weaker. This indicates an increased reliance on 
second order belief from first order belief. * p < significant level after Tukey's correction. B&C. Error bars represent two standard error of the mean. D. Estimated 
protected exceedance probability associated with each model. This index corresponds to the posterior probability that a given model is the most frequent one among 
the models we tested. 
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When choice bias and transition bias were punished, the estimated 
model frequency distribution changed and the probability for the 1st 
order BL model to be the most frequent model was close to 100%. When 
reinforcement bias was punished, the model evidence supported 2nd 
order BL by 9.6% while it supported 1st order BL by 90.0%. A shift from 
1st-order BL to 2nd-order BL in block 3 is consistent with an increased 
negative lagged correlation with one's own action and a weakened 
negative lagged correlation with the opponent's action (Fig. 5 B&C). 

Taken together, this suggests that the mechanism of adaptive au
tonomy is not simply explained by a stochastic action generation pro
cess. People do not simply express voluntary choice in competitive 
games by behaving more randomly. Instead, our analyses support a 
socio-cognitive approach which learns the first-order belief about the 
intention of the opponent's action or the second-order belief about the 
opponent's belief of the participant's action. These belief learning stra
tegies employ a model of the competitive game structure. Particularly, 
as the competitor's prediction became more sophisticated, the partici
pants' choices increasingly relied on understanding how the competitor 
thinks the participant will act. This finding suggests that a cognitive 
mechanism of adaptive autonomy links to social cognition on the con
dition where active interaction with a circumstance is designed to evoke 
autonomous behaviour. 

4. Discussion 

It is widely assumed that humans choose and control their own ac
tions for reasons that are important to them. Psychologists and philos
ophers have argued that volition is a cluster concept which aggregates 
different aspects of human cognition (Haggard, 2019). However, most 
experimental psychology studies struggled to isolate key features of 
human voluntariness in the laboratory, because they used minimalist 
approaches which instructs participants to choose voluntarily among 
meaningless options. Previous neuroscientific literature has emphasized 
that a volitional action must be endogenous and spontaneous, rather 
than stereotyped. At the same time, previous philosophical literature has 
emphasized that a volitional action is made for a reason (Berlin, 1969). 
Human experimental studies have generally struggled to combine these 
two seemingly contradictory features of volition (Maoz and Sinnott- 
Armstrong, 2022; Roskies, 2010). 

Here we have developed a family of novel competitive games which 
allow participants to act in a way which is simultaneously endogenous, 
non-stereotyped, and reasons-responsive. In the game, participants had 
to endogenously generate a new pattern of endogenous behaviour 
(without any immediate stimulus triggers) to thwart a competitor who 
aimed to punish specific behavioural patterns in each block. In this 
sense, our participants were reasons-responsive to the challenge repre
sented by the current gaming environment. Voluntary actions elicited in 
this paradigm are taken to reflect how flexible or how adaptable reasons- 
guided voluntary action choices can be. By developing a series of envi
ronmental challenges and an analysis pipeline for quantifying adaptive 
autonomy for the first time, we found that people can become autono
mous regarding both choice bias and transition bias in transition from 
one action to the next. However, participants had very limited ability to 
become free of reinforcement bias. We further showed, in a large sam
ple, that the correlations between these three forms of adaptive auton
omy were minimal. This pattern of results suggests distinct cognitive 
modules for these three forms of autonomy, rather than a common 
module or a single form. This finding contrasts with the classical view of 
cognitive control as a unitary cognitive resource that underpins willed 
action (Botvinick et al., 2001). 

Our paradigm does not address all the aspects that might constitute 
volition. For instance, volition is often thought to involve consciousness. 
We do not know whether our participants were aware of the different 
competitive pressures, nor whether they strategically made less stereo
typical choices because they became aware of the competitor's rules. 
Future research would clarify whether adaptive autonomy relies on 

explicit processes involving conscious awareness of reasons for action, 
or on implicit processes operating outside of awareness of reasons for 
action. 

4.1. Measures of autonomy 

Traditional experimental psychology struggles to investigate volition 
and autonomy, even though these are distinctive features of the healthy 
adult mind (Locke, 1690/1975). Experimental approaches to the study 
of volition often involved giving people a paradoxical instruction 
regarding how to behave autonomously (Baddeley, 1966; Brass and 
Haggard, 2007; Fleming et al., 2009; Jahanshahi et al., 1995; Libet et al., 
1983). The few studies that have explicitly aimed to investigate human 
autonomous behaviour typically used competitive game contexts (For
der and Dyson, 2016; Wang et al., 2014; Wong et al., 2021), and have 
rarely considered subtypes of autonomy. We conceptualised three forms 
of autonomy, as freedom from three cognitively distinguishable types of 
action-generation strategy: choice bias, transition bias and reinforcement 
bias. We attempted to evoke autonomous behaviour by programming a 
competitor to punish any lack of each type of autonomy, testing these 
three biases in successive blocks Using a statistical distance measure 
derived from information geometry, we quantified the extent to which 
people could break their own stereotypical choice pattern when pun
ished. We found no strong correlations between these three types of 
adaptive autonomy, making a single common underpinning cognitive 
control function unlikely, and supporting the idea that behavioural au
tonomy involves dissociable components. In tasks where participants 
react to external stimuli quickly, it has been suggested that a domain- 
general top-down control is used to solve different cognitive tasks 
(Braver, 2012; Braver et al., 2007; Tang et al., 2022). However, in free, 
stimulus-independent action, our results suggest that domain-specific 
top-down control independently regulates each particular form of 
autonomous behaviour: there are multiple ways to act freely, and it is 
therefore important to consider from what an agent aims to be free. We 
studied choice biases, transition biases and reinforcement biases, but 
other biases counteracting free action doubtless also exist. We showed 
that, for example, an agent who becomes increasingly free from choice 
bias may yet be unable to free themselves from the biasing effects of 
reinforcement. 

4.2. Relevance to classical neuropsychological tasks 

Our study evokes behavioural phenomena that neuropsychologists 
have traditionally studied using arbitrary, open-choice tasks. For 
instance, our measure of choice bias is related to the capacity to inhibit a 
prepotent, impulsive action (Mischel et al., 1972). People usually place 
costs on waiting, preferring earlier rewards; a form of temporal dis
counting (Story et al., 2014). Next, the transition bias we measured re
flects executive control and working memory which are often assessed 
using random number generation tasks (Baddeley et al., 1998; Jahan
shahi et al., 2000). In these tasks, people perform poorly at randomising 
actions, tending to rely on inappropriate heuristic rules, and misun
derstanding the concept of randomness (Baddeley et al., 1998; Misirlisoy 
& Haggard, 2014; Ginsburg and Karpiuk, 1994). These limitations are 
often attributed to limited working memory capacity. In contrast, the 
capacity to avoid the reinforcement bias is related to voluntary override 
of reward-seeking behaviour (Bechara et al., 1994; Lejuez et al., 2002) 
and to the balance between exploitation and exploration (Cohen et al., 
2007). These classical executive functions are often seen as robust in
dividual traits affecting any relevant task that draws on executive ca
pacity (Neiman and Loewenstein, 2011; Ota et al., 2016; Ota et al., 
2019). 

Here we instead treat these biased action selections as a state func
tion of cognitive control processes, which depend on the current envi
ronment, and which we therefore view as different expressions of 
adaptive autonomy. We developed a competitive game in which 
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participants would need to avoid particular action preferences, action 
generating rules, or outcome dependences. Our results demonstrate that 
people can balance choice frequencies and break transitions between 
actions. 

In contrast, we found people could not avoid reinforcement bias. 
Neither positive reinforcement bias nor negative reinforcement bias was 
adapted when penalised. A stereotypical win-stay lose-shift behaviour 
has been shown in competitive games (Ota et al., 2020; Wang et al., 
2014). In particular, people are less flexible regarding changing lose- 
shift behaviour than win-stay behaviour when adapting to new game 
rules (Forder and Dyson, 2016; Sundvall and Dyson, 2022). The expe
rience of a negative outcome modulates the speed-accuracy trade-off on 
the subsequent trial (Desender et al., 2021; Dyson et al., 2018). Indi
vidual differences are also associated with these post-error reaction 
times. Individuals who make quicker decisions after a loss than after a 
win show a poorer performance in a competitive game than individuals 
who show the inverse pattern (Dyson, 2021). Therefore, overcoming 
impulsivity after failure may be a key aspect of volitional control for 
humans. 

4.3. Relevance to model-based behaviour 

We conceptualised that a stochastic generative mechanism and a 
socio-cognitive mechanism could both support adaptive autonomy. 
However, our analyses of sequential dependence reveal that participants 
did not achieve adaptive autonomy by simply behaving randomly or 
stochastically. Rather, participants' action choices were generated by 
updating action values throughout the game. In particular, trial-by-trial 
action generation patterns were consistent with first-order belief 
learning which involves predicting the opponent's likely action. How
ever, this interpretation could be challenged by the view that first order 
belief learning is merely a special case of reinforcement learning in 
which action values of unchosen options are updated by fictive rewards 
(Abe and Lee, 2011; Camerer and Ho, 1999). In any case, both in
terpretations involve learning the model of the environment, and 
therefore qualify as adaptive. 

When transition bias and reinforcement bias were punished, partic
ipants increased their reliance on second-order belief learning. This 
strategy abandons model-free reinforcement learning and its classical 
win-stay lose-shift strategies. In general, as the competitor becomes 
more sophisticated, participants' choices increasingly relied on under
standing the competitor's beliefs and intentions (Devaine et al., 2014; 
Yoshida et al., 2010) even though they were not explicitly informed 
about the competitor's knowledge or action strategies in any block. In 
this sense, participants' non-stereotyped action choice was linked to 
them spontaneously building a cognitive model of the structure of the 
current competitive game environment. Psychologists and philosophers 
have speculated on links between cognitive processes of volition and 
social interaction (Frith and Frith, 2023). Our study points to a cognitive 
mechanism of adaptive autonomy in which competitive interactions 
with other agents could promote both social cognition and volition, in 
the form of non-stereotyped action choices. We based this interpretation 
on a statistical approach inferring patterns of sequential dependence. 
Future experiments could be designed to directly manipulate partici
pants' social cognition and to look for its contribution to adaptive 
autonomy. 

4.4. Limitations 

Our study has a number of limitations. First, one might question on 
theoretical grounds whether our paradigm offers a good testbed for 
volition. Somewhat similar competitive games have, after all, been 
proposed in studies of social cognition, decision-making and learning – 
without reference to volition. This criticism may be difficult to resist 
given that the precise definition of volition remains controversial. 
However, using a recent enumeration of various different features of 

volition (Haggard, 2019), we have shown that the present task elicits 
actions that are both stimulus-independent, habit-independent, and 
goal-directed, and therefore satisfy classical philosophical criteria for 
volition. Further, our task involves motivated selection of when to act, 
similar to a classical neuroscientific study of volition (Libet et al., 1983). 

Next, our participants completed a structured series of games against 
progressively sophisticated competitors appearing in a fixed order. This 
design was logical given the hierarchical dependency of the different 
biases that we hypothesised could constrain the capacity for autono
mous volitional action. For example, we reasoned that transition biases 
of action choice (block 2) could only be studied after biases in action 
choice per se (block 1) were first controlled for. However, fixed-order 
designs are subject to confounding effects of learning, fatigue and 
other time-dependent factors. For example, our participants' inability to 
adapt to reinforcement biases (block 3) may be contaminated by an 
element of fatigue. While such confounds cannot be excluded absolutely 
by our design, our findings of successful adaptation initially (blocks 1 & 
2) followed by less successful adaptation thereafter (block 3), rule out 
simple time-dependent or exposure-dependent effects such as fatigue. 
We addressed the concerns about fixed order design in another pre- 
registered study (https://aspredicted.org/4u7y3.pdf) that will be pub
lished in due course. That study investigated whether a purely random 
competitor would produce the kinds of progressive behavioural changes 
found here, and could thereby estimate simple time-dependent or 
exposure-dependent factors. 

4.5. Empiricist view versus nativist views of human autonomy 

Our work is broadly compatible with an empiricist view of human 
autonomy as opposed to a nativist view. In our view, some of the key 
attributes historically associated with “free will”, such as the ability to 
act endogenously and purposefully, can be acquired, or at least func
tionally adapted, through experience. Such adaptation requires agents 
to make novel, non-habitual, ‘smart’ actions appropriate to their current 
situations. We found that people were more or less successful in 
adapting their decision biases to boost their performance as the 
competitive environment changed. An individual's degree of autonomy 
is unique and contingent on environmental constraints. A strong nativist 
view would suggest that autonomy is a state or trait that occurs within 
the mind of an individual and is independent of the external environ
ment. However, our results imply that autonomous agents are charac
terised by their capacity to react appropriately to the restrictions that the 
environment places on their own actions. In this sense, autonomy can be 
seen as a reasoned, goal-oriented response that occurs through inter
action with an environmental context. 

5. Conclusions 

To conclude, we have developed a new experimental paradigm and 
analysis pipeline to study when and how human actions can become 
autonomous. We propose a new theoretical construct of adaptive au
tonomy, meaning the capacity to free one's behavioural choices from 
constraints of habitual responding, when a particular choice pattern or 
stereotypical behaviour becomes dysfunctional, for example, due to 
environmental changes such as the competitive pressure in our game 
scenarios. We have shown that people can indeed express adaptive au
tonomy, and that they do so by reducing the elements of their biased 
action selection patterns, including repetition of choice, rule-based 
sequential action and dependency on reinforcement. These appear to 
reflect three distinct forms of adaptive autonomy, rather than a single 
common cognitive mechanism for avoiding all decision biases, for 
example by simply strategically boosting the randomness of action 
choices. We show that becoming free from the effects of reinforcement is 
particularly difficult. By demonstrating that belief learning plays an 
important part in adaptive autonomy, we argue for a strong connection 
between volition, adaptive autonomy and social cognition. Finally, we 
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have looked at behavioural adaptation and cognitive flexibility of action 
choices through the lens of voluntary action. In Beyond Freedom and 
Dignity Skinner, 1971/2002 argued that reinforcement-based guidance 
of conditioned responses obviated the need for any cognitive construct 
of volition. We have argued a different position. At least in the context of 
competitive games, the key cognitive features of volition, namely 
stimulus-independence, habit-independence, and goal-dependence 
(Haggard, 2019) are precisely what allow flexible, adaptive and suc
cessful performance. 
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